Application of Skewed Logistic Modeling for Comparison of Traditional and Novel Anthropometric Indices in Discriminating Diabetes: Results of 5-year Follow up Azar Cohort Study

Application of Skewed Logistic Modeling for Comparison of Traditional and Novel Anthropometric Indices in Discriminating Diabetes: Results of 5-year Follow up Azar Cohort Study


چاپ صفحه
پژوهان
صفحه نخست سامانه
نویسندگان
نویسندگان
اطلاعات تفضیلی
اطلاعات تفضیلی
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: ندا گیلانی , روح اله حق شناس , محمد حسین صومی , الناز فرامرزی

عنوان کنگره / همایش: the 3rd International and 5th National Conference on Biomathematics , Iran (Islamic Republic) , Tabriz , 2024

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ندا گیلانی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده بهداشت
کد مقاله 85383
عنوان فارسی مقاله Application of Skewed Logistic Modeling for Comparison of Traditional and Novel Anthropometric Indices in Discriminating Diabetes: Results of 5-year Follow up Azar Cohort Study
عنوان لاتین مقاله Application of Skewed Logistic Modeling for Comparison of Traditional and Novel Anthropometric Indices in Discriminating Diabetes: Results of 5-year Follow up Azar Cohort Study
نوع ارائه سخنرانی
عنوان کنگره / همایش the 3rd International and 5th National Conference on Biomathematics
نوع کنگره / همایش بین المللی
کشور محل برگزاری کنگره/ همایش Iran (Islamic Republic)
شهر محل برگزاری کنگره/ همایش Tabriz
سال انتشار/ ارائه شمسی 1403
سال انتشار/ارائه میلادی 2024
تاریخ شمسی شروع و خاتمه کنگره/همایش 1403/05/03 الی 1403/05/04
آدرس لینک مقاله/ همایش در شبکه اینترنت https://biomath3.tabrizu.ac.ir/files_site/files/r_5_240824180937.pdf
آدرس علمی (Affiliation) نویسنده متقاضی 1. Liver and Gastrointestinal Diseases Research center, Tabriz University of Medical Sciences, Tabriz, Iran. 2. Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran. Email:gilanin@tbzmed.ac.ir

نویسندگان
hide/show

نویسنده نفر چندم مقاله
ندا گیلانیاول
روح اله حق شناسدوم
محمد حسین صومیسوم
الناز فرامرزیچهارم

اطلاعات تفضیلی
hide/show

عنوان متن
خلاصه مقالهBackground: Anthropometric indices (AI) play a crucial role in identifying individuals at risk for various metabolic disorders, including diabetes. The purpose of this study was to identify the diagnostic ability of these indices to discriminate diabetes in the Azar cohort population. Materials and Methods: Subjects who were diabetic in the baseline phase from 15006 participants in study of azar cohort population were excluded and to follow up, a total of 13253 people was included in the analysis. Demographic characteristics and 11 AI were measured. Skewed logistic regression modeling and adjusted risk ratio (aRR) coefficients were used to evaluate the association between the anthropometric indices and diabetes. The receiver operating characteristic (ROC) curve analysis was performed to compare the discrimination of different anthropometric measures. Results: During the follow-up years, a total of 685 participants developed diabetes. The measurements of the AI were significantly higher in subjects with diabetes (P<.001). Body Roundness Index (BRI) and Waist height ratio (WHtR) exhibited the largest AUCs for predicting diabetes onset risk (both AUC=0.6989) among these anthropometric measures. Significant aRR for BRI and WhtR were 3.69 and 7.89, respectively. Conclusions: The BRI and WtHR demonstrated superior efficacy in detecting diabetes within the Azar Cohort population.
کلمات کلیدیAnthropometric, Incidence Diabetes, Modeling

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
paper in booklet.pdf1403/06/08268211دانلود
Booklet.pdf1403/06/0816036483دانلود
IMG_20240901_093148_188.jpg1403/06/1130468دانلود