Accuracy of deep learning algorithms in the classification of schizophrenia patients using MRI images

Accuracy of deep learning algorithms in the classification of schizophrenia patients using MRI images


چاپ صفحه
پژوهان
صفحه نخست سامانه
نویسندگان
نویسندگان
اطلاعات تفضیلی
اطلاعات تفضیلی
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: صهبا مفضل , ناهیده قره آغاجی

عنوان کنگره / همایش: 20th Iranian Congress of Radiographic Sciences , Iran (Islamic Republic) , تهران , 2023

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ناهیده قره آغاجی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده پیراپزشکی
کد مقاله 81952
عنوان فارسی مقاله Accuracy of deep learning algorithms in the classification of schizophrenia patients using MRI images
عنوان لاتین مقاله Accuracy of deep learning algorithms in the classification of schizophrenia patients using MRI images
نوع ارائه پوستر
عنوان کنگره / همایش 20th Iranian Congress of Radiographic Sciences
نوع کنگره / همایش ملی
کشور محل برگزاری کنگره/ همایش Iran (Islamic Republic)
شهر محل برگزاری کنگره/ همایش تهران
سال انتشار/ ارائه شمسی 1402
سال انتشار/ارائه میلادی 2023
تاریخ شمسی شروع و خاتمه کنگره/همایش 1402/02/19 الی 1402/02/22
آدرس لینک مقاله/ همایش در شبکه اینترنت
آدرس علمی (Affiliation) نویسنده متقاضی Radiology Department, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran

نویسندگان
hide/show

نویسنده نفر چندم مقاله
صهبا مفضلاول
ناهیده قره آغاجیدوم

اطلاعات تفضیلی
hide/show

عنوان متن
خلاصه مقالهPurpose: Schizophrenia is one of the acute mental disorders that disturb patients' cognition, behavior and emotion. Its clinical diagnosis is usually based on fulfilling criteria of phenotypical features, which is time-consuming. Therefore, using the methods for early diagnosis of schizophrenia and faster therapeutic interventions is essential. Machine learning algorithms have shown good performance for schizophrenia classification, but due to the limitation in manual feature selection, they may not fully represent the neural differences associated with schizophrenia. On the other hand, deep learning algorithms, especially convolutional neural networks (CNN), can learn the fully automatic features related to schizophrenia. The aim of this study is to determine the accuracy of the deep learning algorithms in the classification of schizophrenia patients using MRI images. Methods: We searched the articles published in 2018-2022 in PubMed, Google Scholar, and AltaVista databases using the keywords of schizophrenia, classification, deep learning algorithms, and magnetic resonance imaging. Among the searched articles, the most relevant ones were reviewed. Result: According to the findings, various deep learning algorithms such as pre-trained 2D CNN, 3D Naïve CNN, modified 3D VGG with squeeze excitation (SE) and batch normalization (BN) model (SE-VGG-11BN), and 2D convolutional Autoencoder (CNN-AE) have been used for the classification of schizophrenia using structural, diffusion, and functional MRI images. The reviewed articles results showed an accuracy of 72-97% for classifying schizophrenia in MRI images using these algorithms. Conclusion: Deep learning algorithms showed a high accuracy for the classification of schizophrenia patients using MRI images.
کلمات کلیدی: Schizophrenia, Classification, Deep learning algorithms, Magnetic resonance imaging

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Deep learning.JPG1402/04/1791248دانلود
Deep learning certificate.pdf1402/04/17201840دانلود