Joint compensation for motion and partial volume effects in PET/CT images of lung cancer patients: impact on quantification for different image reconstruction methods

Joint compensation for motion and partial volume effects in PET/CT images of lung cancer patients: impact on quantification for different image reconstruction methods


چاپ صفحه
پژوهان
صفحه نخست سامانه
نویسندگان
نویسندگان
اطلاعات تفضیلی
اطلاعات تفضیلی
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سحر رضائی

عنوان کنگره / همایش: EANM’19 – 32th Annual Congress of the European Association of Nuclear Medicine , Spain , Barcelona , 2019

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سحر رضائی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده پزشکی
کد مقاله 79336
عنوان فارسی مقاله Joint compensation for motion and partial volume effects in PET/CT images of lung cancer patients: impact on quantification for different image reconstruction methods
عنوان لاتین مقاله Joint compensation for motion and partial volume effects in PET/CT images of lung cancer patients: impact on quantification for different image reconstruction methods
نوع ارائه پوستر
عنوان کنگره / همایش EANM’19 – 32th Annual Congress of the European Association of Nuclear Medicine
نوع کنگره / همایش بین المللی
کشور محل برگزاری کنگره/ همایش Spain
شهر محل برگزاری کنگره/ همایش Barcelona
سال انتشار/ ارائه شمسی 1398
سال انتشار/ارائه میلادی 2019
تاریخ شمسی شروع و خاتمه کنگره/همایش 1398/07/20 الی 1398/07/24
آدرس لینک مقاله/ همایش در شبکه اینترنت https://www.uicc.org/events/eanm%E2%80%9919-%E2%80%93-32th-annual-congress-european-association-nuclear-medicine
آدرس علمی (Affiliation) نویسنده متقاضی a Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran b Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سحر رضائیاول

اطلاعات تفضیلی
hide/show

عنوان متن
کلمات کلیدیJoint compensation- PET/CT images - lung cancer - image reconstruction-
خلاصه مقالهAim/Introduction: To develop and rigorously evaluate an image-based deconvolution technique for joint compensation of respiratory motion and partial volume eects (PVEs) for quantitative oncologic PET imaging, including studying the impact of dierent image reconstruction methods on quantication performance. Materials and Methods: An image-based deconvolution technique was proposed, incorporating wavelet-based denoising within the Lucy-Richardson algorithm to jointly compensate for PVEs and respiratory motion. The method was evaluated using phantom studies with signalto-background ratios (SBR) of 4 and 8, and using data from 10 patients with 62 lung lesions. In each study, PET images were reconstructed using four dierent methods: OSEM with timeof-ight (TOF) information, OSEM with point spread function modelling (PSF), OSEM with both TOF and PSF (TOFPSF), and OSEM without PSF or TOF (OSEM). Contrast to noise ratio (CNR), coecient of variation (COV), and maximum standardized uptake values (SUVmax) were measured within the tumours, and compared to images that were not processed using the joint-compensation technique. Furthermore, variabilities arising due to the choice of the reconstruction methods were assessed. Results: In phantom images, for all reconstruction methods, CNR and SUVmax were higher in the images processed using the proposed compensation technique, particularly in small spheres. The mean CNR in all spheres was increased in our proposed method by 49.5%, 41.9 %, 44.9% and 38.9% for OSEM, PSF, TOF, and TOFPSF, respectively, in comparison with uncompensated images for 4:1 SBR, and by 30.6%, 27.4%, 38.0% and 33.6% for 8:1 SBR. Overall, incorporation of wavelet-based denoising within the Lucy Richardson algorithm improved CNR and COV in all cases. In patient data, the median values of the relative dierence (%) of CNR for the compensated images in comparison to uncompensated images were 43.4%, 39.5%, 46.3% and 42.8% for OSEM-basic, PSF, TOF, and TOFPSF, respectively. Changes in motion amplitude, target size and SBRs in patient data resulted in signicant inter-method dierences in images reconstructed using dierent methods. Specically, in small spheres, quantitative accuracy was highly dependent on the choice of the reconstruction method. Conclusion: Our results provide strong evidence that joint compensation, and in particular, incorporation of wavelet-based denoising, yielded improved quantication from PET images. The choice of the reconstruction method led to changes in quantitative accuracy, especially when the signal support is small. Overall, the reconstruction methods need to be carefully selected when applying compensation techniques. References: None

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
2019_Article_AnnualCongressOfTheEuropeanAss.pdf1401/05/23100099دانلود
Presentation_Confirmation_4387.pdf1401/05/231627951دانلود