Developing a Gaussian Model Based Histogram Equalization Technique for Enhancement of Breast Thermography Images

Developing a Gaussian Model Based Histogram Equalization Technique for Enhancement of Breast Thermography Images


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: ناصر صمدزاده اقدم , ریحانه افغان

کلمات کلیدی: Breast Thermography; Histogram Equalization; Gaussian Model; Contrast Enhancement; Objective Criteria.

نشریه: 0 , 3 , 9 , 2022

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ناصر صمدزاده اقدم
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 78973
عنوان فارسی مقاله Developing a Gaussian Model Based Histogram Equalization Technique for Enhancement of Breast Thermography Images
عنوان لاتین مقاله Developing a Gaussian Model Based Histogram Equalization Technique for Enhancement of Breast Thermography Images
ناشر 2
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق) Frontiers in Biomedical Technologies
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح سه – Scopus
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Purpose: Breast cancer is one of the most prevalent diseases among women worldwide. One of the effective ways to reduce the risk of death from breast cancer is early detection by breast screening methods such as thermography. Thermography is non-invasive infrared imaging that detects early symptoms of breast angiogenesis based on the temperature difference and asymmetric patterns between left and right breasts. For better visual perception, it is essential to increase the medical image quality and contrast. Materials and Methods: Histogram Equalization (HE) is a common and effective technique for contrast enhancement that uses the whole dynamic range of gray levels. In this paper, we propose to apply the equalization technique to the object part of the image rather than the background. One way is to use Otsu's method for automatic image thresholding. A more efficient approach to extract the body region is to fit a bimodal Gaussian distribution on the temperature information and restrict the equalization on gray level ranges corresponding to temperatures between the mean minus/plus three times of standard deviation. Results: We compared the performance of the proposed approach with six conventional HE methods by using objective criteria, including Absolute Mean Brightness Error (AMBE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSI), and Entropy. Conclusion: Based on objective measures, as well as subjective visual inspection of the results, the proposed Gaussian model-based HE has better performance in contrast enhancement and brightness preservation among other methods.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
ناصر صمدزاده اقدمدوم
ریحانه افغاناول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
441-Article Text-3878-2-10-20220621.pdf1401/04/03980149دانلود