Predicting the Drug Clearance Pathway with Structural Descriptors

Predicting the Drug Clearance Pathway with Structural Descriptors


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: نوید کبودی , علی شایان فر

کلمات کلیدی: Clearance، Predcition، Structural Descriptors

نشریه: 10943 , 5 , 47 , 2022

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله علی شایان فر
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات آنالیز دارویی
کد مقاله 78644
عنوان فارسی مقاله Predicting the Drug Clearance Pathway with Structural Descriptors
عنوان لاتین مقاله Predicting the Drug Clearance Pathway with Structural Descriptors
ناشر 2
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background and Objective The clearance, by renal elimination or hepatic metabolism, is one of the most important pharmacokinetic parameters of a drug. It allows the half-life, bioavailability, and drug–drug interactions to be predicted, and it can also affect the dose regimen of a drug. Predicting the clearance pathways of new chemical candidates during drug development is vital in order to minimize the risks of possible side effects and drug interactions. Many in vivo methods have been established to predict drug clearance in humans, and these mainly rely on data from in vivo studies in preclinical species—mainly rats, dogs, and monkeys. They are also time consuming and expensive. The aim of this study was to find the relationship between structural parameters of drugs and their clearance pathways. Methods The clearance pathway of each drug was obtained from the literature. Various structural descriptors [Abraham solvation parameters, topological polar surface area, numbers of hydrogen-bond donors and acceptors, number of rotatable bonds, molecular weight, logarithm of the partition coefficient (logP), and logarithm of the distribution coefficient at pH 7.4 (logD7.4)] were applied to develop a mechanistic model for predicting clearance pathways. Results The results of this study indicate that compounds with logD7.4 > 1 or with zero or one hydrogen-bond donor undergo hepatic metabolism, whereas the clearance pathway for chemicals with logD7.4 < − 2 is renal elimination. Furthermore, models established using logistic regression based on five structural parameters for compounds with – 2 < logD7.4 < 1 could be used in a clearance pathway prediction tool. The overall prediction accuracies of the first and second models were 84.8% and 84.4%, respectively. Conclusion The developed model can be used to find the clearance pathways of new drug candidates with acceptable accuracy. The main descriptors that are used to evaluate this parameter are the hydrophobicity and the number of hydrogenbonding functional groups of the compound.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
نوید کبودیاول
علی شایان فردوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Kaboudi and Shayanfar.pdf1401/02/181698230دانلود