IDENTIFICATION OF IMPORTANT PATHOLOGICAL MRNA AND MICRORNA TRANSCRIPTS INVOLVED IN WILMS TUMOR AND RHABDOID TUMOR OF THE KIDNEY USING ASSOCIATION RULE MINING

IDENTIFICATION OF IMPORTANT PATHOLOGICAL MRNA AND MICRORNA TRANSCRIPTS INVOLVED IN WILMS TUMOR AND RHABDOID TUMOR OF THE KIDNEY USING ASSOCIATION RULE MINING


چاپ صفحه
پژوهان
صفحه نخست سامانه
نویسندگان
نویسندگان
اطلاعات تفضیلی
اطلاعات تفضیلی
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سپیده زنونی واحد , محمد رضا اردلان , سید مهدی حسینی یان خطیبی , سعید پیرمرادی

عنوان کنگره / همایش: World Congress of Nephrology 2022 , Malaysia , Kuala lumpur , 2022

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سیده مینا حجازیان
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات کلیه
کد مقاله 78315
عنوان فارسی مقاله IDENTIFICATION OF IMPORTANT PATHOLOGICAL MRNA AND MICRORNA TRANSCRIPTS INVOLVED IN WILMS TUMOR AND RHABDOID TUMOR OF THE KIDNEY USING ASSOCIATION RULE MINING
عنوان لاتین مقاله IDENTIFICATION OF IMPORTANT PATHOLOGICAL MRNA AND MICRORNA TRANSCRIPTS INVOLVED IN WILMS TUMOR AND RHABDOID TUMOR OF THE KIDNEY USING ASSOCIATION RULE MINING
نوع ارائه پوستر
عنوان کنگره / همایش World Congress of Nephrology 2022
نوع کنگره / همایش بین المللی
کشور محل برگزاری کنگره/ همایش Malaysia
شهر محل برگزاری کنگره/ همایش Kuala lumpur
سال انتشار/ ارائه شمسی 1400
سال انتشار/ارائه میلادی 2022
تاریخ شمسی شروع و خاتمه کنگره/همایش 1400/12/05 الی 1400/12/08
آدرس لینک مقاله/ همایش در شبکه اینترنت
آدرس علمی (Affiliation) نویسنده متقاضی Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سپیده زنونی واحداول
محمد رضا اردلاندوم
سید مهدی حسینی یان خطیبیسوم
سعید پیرمرادیچهارم

اطلاعات تفضیلی
hide/show

عنوان متن
خلاصه مقالهIntroduction: Wilms tumor (WT) and rhabdoid tumor of the kidney (RT) are respectively the most and less common types of pediatric kidney tumors. Due to the presence of overlapping histologic patterns and similar cell types across these tumors, their differential diagnosis solely based on histologic study can be challenging. To this end, this study aimed to apply machine learning and deep learning algorithms to identify the most important mRNAs and microRNAs panels that can be involved in the pathogenesis of the WT and RT. Methods: The RNA transcripts including 1881 microRNA (miRNAs) and 60,482 mRNAs obtained from 126 and 199 patients, respectively, were downloaded from The Cancer Genome Atlas (TCGA) dataset. To identify candidate features (mRNAs and miRNAs), graph and filter algorithms were used in feature selection. Then, a deep model was used to classify the tumors. Finally, an association rule mining algorithm was used for detecting the most significant mRNAs/ miRNAs involved in the pathogenesis of the WT and RT. Results: In the classification step, candidate miRNAs could classify the WT and RT classes in train/test data with high accuracy (97% / 93%). Candidate mRNAs could also classify the WT and RT classes in train/ test data with high accuracy (94% / 97%) and AUC ($0.95). The Association Rule Mining analysis could identify the Chromosome 19 open reading frame 24 (C19orf24) and let-7a-2 as well as the RP1-3E10.2 and miR-199b as first top transcripts in the WT and RT, respectively. Conclusions: The employed framework can offer further insight into the pathogenesis, diagnosis, prognosis, and therapeutic targets in pediatric kidney tumors.
کلمات کلیدیMRNA, MICRORNA, WILMS TUMOR, RHABDOID TUMOR, KIDNEY, RULE MINING

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Wilms Abstract KIR.pdf1400/12/2399123دانلود
Wilms WCN certification.pdf1400/12/23498203دانلود