Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence

Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: فرزانه حمیدی , ندا گیلانی , پروین سربخش

کلمات کلیدی: Biomarker, Elasticnet, Feature Selection, Gene Expression Omnibus (GEO), Lasso, Machine Learning, Ovarian Cancer

نشریه: 12277 , 1 , 12 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ندا گیلانی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده بهداشت
کد مقاله 77554
عنوان فارسی مقاله Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence
عنوان لاتین مقاله Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Ovarian cancer is the second most dangerous gynecologic cancer with a high mortality rate. The classification of gene expression data from high-dimensional and small-sample gene expression data is a challenging task. The discovery of miRNAs, a small non-coding RNA with 18–25 nucleotides in length that regulates gene expression, has revealed the existence of a new array for regulation of genes and has been reported as playing a serious role in cancer. By using LASSO and Elastic Net as embedded algorithms of feature selection techniques, the present study identified 10 miRNAs that were regulated in ovarian serum cancer samples compared to non-cancer samples in public available dataset GSE106817: hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-1233-5p, hsa-miR- 4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsamiR- 3184-5p, and hsa-miR-320b. Further, we implemented state-of-the-art machine learning classifiers, such as logistic regression, random forest, artificial neural network, XGBoost, and decision trees to build clinical prediction models. Next, the diagnostic performance of these models with identified miRNAs was evaluated in the internal (GSE106817) and external validation dataset (GSE113486) by ROC analysis. The results showed that first four prediction models consistently yielded an AUC of 100%. Our findings provide significant evidence that the serum miRNA profile represents a promising diagnostic biomarker for ovarian cancer.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
فرزانه حمیدیاول
ندا گیلانیدوم
پروین سربخشچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
fgene-12-724785.pdf1400/09/163038010دانلود