The Most Effective Factors in Predicting Bioelectrical Impedance Phase Angle for Classification of Healthy and Depressed Obese Women: An Artificial Intelligence Approach

The Most Effective Factors in Predicting Bioelectrical Impedance Phase Angle for Classification of Healthy and Depressed Obese Women: An Artificial Intelligence Approach


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سید امیر طباطبایی حسینی , مهداد اسمعیلی

کلمات کلیدی: Bioelectrical impedance analysis Body composition Phase angle Artificial Intelligence Machine learning

نشریه: 0 , 12 , 308 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله مهداد اسمعیلی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 77076
عنوان فارسی مقاله The Most Effective Factors in Predicting Bioelectrical Impedance Phase Angle for Classification of Healthy and Depressed Obese Women: An Artificial Intelligence Approach
عنوان لاتین مقاله The Most Effective Factors in Predicting Bioelectrical Impedance Phase Angle for Classification of Healthy and Depressed Obese Women: An Artificial Intelligence Approach
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق) Lecture Notes in Networks and Systems
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح سه – Scopus
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Phase Angle (PhA) is one of the most clinically relevant and important parameters that describes the ratio of body reactance and resistance. It is used for evaluating the nutritional status and determining the risk of various conditions such as cancer, AIDS, and many chronic diseases. The purpose of this research was to assess the most effective factors associated with prediction of PhA in two groups of healthy and depressed obese women. This was done by constructing a predictive model using machine learning multivariate regression methods to easily assess nutritional and cellular status in different subject groups. In this study, we used the TANITA body composition analyzer to collect data from 120 obese women out of which 61 suffered from depression. Fourteen different factors from the subject’s body including sex, age, height, weight, fat mass, and muscle mass was used for the prediction of PhA using machine learning methods. Two classes of multivariable regression analyses were considered. Every method with several feature selections was trained and tested to obtain the least error for PhA estimation. Then, for each of the two groups of participants the feature selection method was implemented to optimize the model. Our findings suggest that the PhA values of healthy and depressed obese women depend on several variables in their bodies. These variables are Age, Weight, FFM, VFR, TBW, and ICW for healthy obese women and Age, fat mass, BMI, TBW, and ICW for obese women with depressions.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سید امیر طباطبایی حسینیاول
مهداد اسمعیلیدوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
INFUS2021_254_final_v4.pdf1400/07/26176607دانلود