Automatic classification of schizophrenia patients using resting-state EEG signals

Automatic classification of schizophrenia patients using resting-state EEG signals


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: حسین نجف زاده , مهداد اسمعیلی , سید حسین راستا , سارا فرهنگ

کلمات کلیدی: Keywords: Schizophrenia· Classification· Entropy· Decision support system· Feature selection

نشریه: 0 , 3 , 44 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سید حسین راستا
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 76586
عنوان فارسی مقاله Automatic classification of schizophrenia patients using resting-state EEG signals
عنوان لاتین مقاله Automatic classification of schizophrenia patients using resting-state EEG signals
ناشر 5
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق) Physical and Engineering Sciences in Medicine
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Schizophrenia is one of the serious mental disorders, which can suspend the patient from all aspects of life. In this paper we introduced a new method based on the adaptive neuro fuzzy inference system (ANFIS) to classify recorded electroencephalogram (EEG) signals from 14 schizophrenia patients and 14 age-matched control participants. Sixteen EEG channels from 19 main channels that had the most discriminatory information were selected. Possible artifacts of these channels were eliminated with the second-order Butterworth filter. Four features, Shannon entropy, spectral entropy, approximate entropy, and the absolute value of the highest slope of autoregressive coefficients (AVLSAC) were extracted from each selected EEG channel in 5 frequency sub-bands, Delta, Theta, Alpha, Beta, and Gamma. Forty-six features were introduced among the 640 possible ones, and the results included accuracies of near 100%, 98.89%, and 95.59% for classifiers of ANFIS, support vector machine (SVM), and artificial neural network (ANN), respectively. Also, our results show that channels of alpha of O1, theta and delta of Fz and F8, and gamma of Fp1 have the most discriminatory information between the two groups. The performance of our proposed model was also compared with the recently published approaches. This study led to presenting a new decision support system (DSS) that can receive a person’s EEG signal and separates the schizophrenia patient and healthy subjects with high accuracy.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
حسین نجف زادهاول
مهداد اسمعیلیدوم
سید حسین راستاپنجم
سارا فرهنگسوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Automatic classification of schizophrenia patients using resting-state EEG signals.pdf1400/07/102384667دانلود