Developing a Multi-channel Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources

Developing a Multi-channel Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: ناصر صمدزاده اقدم

کلمات کلیدی: ICA Based Beamformer; Correlated Sources Recovery; Signal Processing, Computer-Assisted; Electroencephalography; Brain Waves

نشریه: 19508 , 2 , 11 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ناصر صمدزاده اقدم
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 76156
عنوان فارسی مقاله Developing a Multi-channel Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources
عنوان لاتین مقاله Developing a Multi-channel Beamformer by Enhancing Spatially Constrained ICA for Recovery of Correlated EEG Sources
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح سه – Scopus
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Brain source imaging based on electroencephalogram (EEG) data aims to recover the neuron populations’ activity producing the scalp potentials. This procedure is known as the EEG inverse problem. Recently, beamformers have gained a lot of consideration in the EEG inverse problem. Objective: Beamformers lack acceptable performance in the case of correlated brain sources. These sources happen when some regions of the brain have simultaneous or correlated activities such as auditory stimulation or moving left and right extremities of the body at the same time. In this paper, we have developed a multichannel beamformer robust to correlated sources. Material and Methods: In this simulation study, we have looked at the problem of brain source imaging and beamforming from a blind source separation point of view. We focused on the spatially constraint independent component analysis (scICA) algorithm, which generally benefits from the pre-known partial information of mixing matrix, and modified the steps of the algorithm in a way that makes it more robust to correlated sources. We called the modified scICA algorithm Multichannel ICA based EEG Beamformer (MIEB). Results: We evaluated the proposed algorithm on simulated EEG data and compared its performance quantitatively with three algorithms: scICA, linearly-constrained minimum-variance (LCMV) and Dual-Core beamformers; it is considered that the latter is specially designed to reconstruct correlated sources. Conclusion: The MIEB algorithm has much better performance in terms of normalized mean squared error in recovering the correlated/uncorrelated sources both in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust beamformer in recovering correlated brain sources.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
ناصر صمدزاده اقدماول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
JBPE-11-205.pdf1400/04/05985213دانلود