Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes

Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: حسن شاهرخی

کلمات کلیدی: Attention deficit hyperactivity disorder (ADHD), Computer-aided diagnosis (CAD), EEG, Deep learning, Convolutional neural network (CNN).

نشریه: 4718 , 2021 , 63 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله حسن شاهرخی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه روانپزشکی و علوم رفتاری
کد مقاله 75453
عنوان فارسی مقاله Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes
عنوان لاتین مقاله Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Attention deficit hyperactivity disorder (ADHD) is a ubiquitous neurodevelopmental disorder affecting many children. Therefore, automated diagnosis of ADHD can be of tremendous value. Unfortunately, unlike many other applications, the use of deep learning algorithms for automatic detection of ADHD is still limited. Method: In this paper, we proposed a novel computer aided diagnosis system based on deep learning approach to classify the EEG signal of Healthy children (Control) from ADHD children with two subtypes of Combined ADHD (ADHD-C) and Inattentive ADHD (ADHD-I). Inspired by the classical approaches, we proposed a deep convolutional neural network that is capable of extracting both spatial and frequency band features from the raw electroencephalograph (EEG) signal and then performing the classification. Result: We achieved the highest classification accuracy with the combination of β 1 , β , and γ bands. Accuracy Recall, Precision, and Kappa values were %99.46, %99.45, %99.48, and 0.99, respectively. After investigating the spatial channels, we observed that electrodes in the Posterior side had the most contribution. Conclusions: To the best of our knowledge, all previous multiclass studies were based on fMRI and MRI imaging. Therefore, the presented research is novel in terms of using a deep neural network architecture and EEG signal for multiclass classification of ADHD and healthy children with high accuracy.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
حسن شاهرخیسوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
13-34Computer aided diagnosis system using deep convolutional neural.pdf1400/01/065805193دانلود