Impact of Gene Biomarker Discovery Tools Based on Protein–Protein Interaction and Machine Learning on Performance of Artifcial Intelligence Models in Predicting Clinical Stages of Breast Cancer

Impact of Gene Biomarker Discovery Tools Based on Protein–Protein Interaction and Machine Learning on Performance of Artifcial Intelligence Models in Predicting Clinical Stages of Breast Cancer


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: الهام امجد سقین سرا , سولماز اثناعشری , بابک سکوتی , سیاوش دستمالچی

کلمات کلیدی: Breast cancer Biomarker identification Machine learning Artificial intelligence Gene Staging system

نشریه: 55227 , 4 , 12 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله بابک سکوتی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات بیوتکنولوژی(زیست فناوری)
کد مقاله 75387
عنوان فارسی مقاله Impact of Gene Biomarker Discovery Tools Based on Protein–Protein Interaction and Machine Learning on Performance of Artifcial Intelligence Models in Predicting Clinical Stages of Breast Cancer
عنوان لاتین مقاله Impact of Gene Biomarker Discovery Tools Based on Protein–Protein Interaction and Machine Learning on Performance of Artifcial Intelligence Models in Predicting Clinical Stages of Breast Cancer
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Breast cancer, as one of the most common diseases threatening the women's life, has attracted serious attention of the clinical and biomedical researchers worldwide. The genome-based studies along with their registered GEO datasets are frequent in the literature. Since several methodologies have been developed for analyzing and identifying gene biomarkers, it is necessary to evaluate their robustness. In this study, three well-known biomarker identification methods (i.e., ClusterOne, MCODE, and BioDiscML) were employed in order to identify the potential biomarkers. Then, the methods were ranked and evaluated using nonlinear classification models developed based on the identified sets of biomarkers. A combined BC microarray dataset consisting of GSE124647, GSE124646, and GSE15852 was used as training set, and two test datasets, GSE15852 and GSE25066, were used for the performance measurement of the trained models. The validation of the proposed models was carried out internally (leave-one-out, fivefold and tenfold cross-validation, random sampling, test on training set) and externally (test on test set). The results showed that ClusterOne, MCODE, and BioDiscML tools ranked first, second, and third, respectively, based on the area under the curve (AUC), accuracy, F1 score, precision, and recall metrics. Overall, it can be concluded that the descriptive values of gene biomarkers in terms of their biological aspects that have been determined by a given methodology and the predictive power of the models developed based on the identified gene biomarkers should be considered simultaneously while validating the biomarker identification approaches.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
الهام امجد سقین سرااول
سولماز اثناعشریاول
بابک سکوتیسوم
سیاوش دستمالچیچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
article1.pdf1399/12/2012717857دانلود