CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images

CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: رعنا جهانبان اسفهلان , خالد صیدی

کلمات کلیدی: Covid-19, deep learning, CT images,COVIDCTNET

نشریه: 0 , 29 , 4 , 2021

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله رعنا جهانبان اسفهلان
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 75259
عنوان فارسی مقاله CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images
عنوان لاتین مقاله CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images
ناشر 22
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق) npj Digital Medicine
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptasepolymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid method; however, its accuracy in detection is only ~70–75%. Another approved strategy is computed tomography (CT) imaging. CT imaging has a much higher sensitivity of ~80–98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection, we developed an open-source framework, CovidCTNet, composed of a set of deep learning algorithms that accurately differentiates Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging detection to 95% compared to radiologists (70%). CovidCTNet is designed to work with heterogeneous and small sample sizes independent of the CT imaging hardware. To facilitate the detection of Covid-19 globally and assist radiologists and physicians in the screening process, we are releasing all algorithms and model parameter details as open-source. Open-source sharing of CovidCTNet enables developers to rapidly improve and optimize services while preserving user privacy and data ownership.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
رعنا جهانبان اسفهلانپانزدهم
خالد صیدیشانزدهم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
(69) nature digital medicine.pdf1399/12/072467348دانلود
code akhlagh.pdf1400/05/08690086دانلود
top 1%.JPG1400/05/0875547دانلود