| Background: To model, the predictors of injuries caused the hospitalization of motorcyclists using a hybrid
structural equation modeling-artificial neural network (SEM-ANN) considering a conceptual model.
Methods: In this case-control study, 300 cases and 156 controls were enrolled using a cluster random sampling. The cases were selected among injured motorcyclists in refereed to Imam Reza Hospital and Tabriz
Shohada Hospital, Tabriz, Iran since Mar 2013. The predictability of injury by motorcycle-riding behavior
questionnaire (MRBQ), Attention-deficit/hyperactivity disorder (ADHD) along with its subscales and motorcycle related variables was modeled using SEM-ANN. By SEM, linear direct and indirect relationships were
assessed. To improve the SEM, the ANN was utilized sequentially to account for the nonlinear and interaction
effects that is not supported by SEM.
Results: The predictors of injury were: MRBQ, ADHD, and its subscales, marital status, education level, riding for fun, engine volume, hyper active child, dark hour riding, cell phone answering, driving license (All P less
than 0.05). In addition, the findings reveal the Mediating role of MRBQ for the relationship between underlying predictors and injury. Furthermore, ANN showed higher specificity (95.45 vs.77.88) and accuracy (90.76
vs.79.94) than usual SEM which lead us to introduce the second and third order effect of MRBQ into the
modified SEM.
Conclusion: The hybrid model provided results that are more accurate; considering the results of the modeling, having intervention programs on ADHD motorcyclists, those have the hyperactive child, and those who
answer their cell phones while driving, and improving the motorcyclists’ goal is highly recommended. |