A Hybrid of Structural Equation Modeling and Artificial Neural Networks to Predict Motorcyclists’ Injuries: A Conceptual Model in a Case-Control Study

A Hybrid of Structural Equation Modeling and Artificial Neural Networks to Predict Motorcyclists’ Injuries: A Conceptual Model in a Case-Control Study


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: شیلا حسن زاده آرنائی , محمد اصغری جعفرآبادی , همایون صادقی بازرگانی

کلمات کلیدی: Motorcyclists; Traffic injury; Structural equation modeling, Neural networks

نشریه: 16497 , 11 , 49 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله محمد اصغری جعفرآبادی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز مدیریت و پیشگیری از مصدومیتهای حوادث ترافیکی
کد مقاله 74328
عنوان فارسی مقاله A Hybrid of Structural Equation Modeling and Artificial Neural Networks to Predict Motorcyclists’ Injuries: A Conceptual Model in a Case-Control Study
عنوان لاتین مقاله A Hybrid of Structural Equation Modeling and Artificial Neural Networks to Predict Motorcyclists’ Injuries: A Conceptual Model in a Case-Control Study
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: To model, the predictors of injuries caused the hospitalization of motorcyclists using a hybrid structural equation modeling-artificial neural network (SEM-ANN) considering a conceptual model. Methods: In this case-control study, 300 cases and 156 controls were enrolled using a cluster random sampling. The cases were selected among injured motorcyclists in refereed to Imam Reza Hospital and Tabriz Shohada Hospital, Tabriz, Iran since Mar 2013. The predictability of injury by motorcycle-riding behavior questionnaire (MRBQ), Attention-deficit/hyperactivity disorder (ADHD) along with its subscales and motorcycle related variables was modeled using SEM-ANN. By SEM, linear direct and indirect relationships were assessed. To improve the SEM, the ANN was utilized sequentially to account for the nonlinear and interaction effects that is not supported by SEM. Results: The predictors of injury were: MRBQ, ADHD, and its subscales, marital status, education level, riding for fun, engine volume, hyper active child, dark hour riding, cell phone answering, driving license (All P less than 0.05). In addition, the findings reveal the Mediating role of MRBQ for the relationship between underlying predictors and injury. Furthermore, ANN showed higher specificity (95.45 vs.77.88) and accuracy (90.76 vs.79.94) than usual SEM which lead us to introduce the second and third order effect of MRBQ into the modified SEM. Conclusion: The hybrid model provided results that are more accurate; considering the results of the modeling, having intervention programs on ADHD motorcyclists, those have the hyperactive child, and those who answer their cell phones while driving, and improving the motorcyclists’ goal is highly recommended.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
شیلا حسن زاده آرنائیاول
محمد اصغری جعفرآبادیدوم
همایون صادقی بازرگانیسوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
15063-Article Text-58164-1-10-20201027.pdf1399/08/111038605دانلود
15063-Article Text-58164-1-10-20201027.pdf1399/08/111038605دانلود