The outcome in patients with brain stroke: A deep learning neural network modeling

The outcome in patients with brain stroke: A deep learning neural network modeling


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: نسرین صومعه , محمد اصغری جعفرآبادی , فرشید فرضی پور

کلمات کلیدی: Brain stroke, data mining, deep learning, predicting, risk factors

نشریه: 18529 , 1 , 25 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله محمد اصغری جعفرآبادی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده بهداشت
کد مقاله 73670
عنوان فارسی مقاله The outcome in patients with brain stroke: A deep learning neural network modeling
عنوان لاتین مقاله The outcome in patients with brain stroke: A deep learning neural network modeling
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: The artificial intelligence field is obtaining ever-increasing interests for enhancing the accuracy of diagnosis and the quality of patient care. Deep learning neural network (DLNN) approach was considered in patients with brain stroke (BS) to predict and classify the outcome by the risk factors. Materials and Methods: A total of 332 patients with BS (mean age: 77.4 [standard deviation: 10.4] years, 50.6% – male) from Imam Khomeini Hospital, Ardabil, Iran, during 2008–2018 participated in this prospective study. Data were gathered from the available documents of the BS registry. Furthermore, the diagnosis of BS was considered based on computerized tomography scans and magnetic resonance imaging. The DLNN strategy was applied to predict the effects of the main risk factors on mortality. The quality of the model was measured by diagnostic indices. Results: The finding of this study for 81 selected models demonstrated that ranges of accuracy, sensitivity, and specificity are 90.5%–99.7%, 83.8%–100%, and 89.8%–99.5%, respectively. Based on the optimal model (tangent hyperbolic activation function with the minimum–maximum hidden units of 10–20, max epochs of 400, momentum of 0.5, and learning rate of 0.1), the most important predictors for BS mortality were time interval after 10 years (accuracy = 92.2%), age category (75.6%), the history of hyperlipoproteinemia (66.9%), and education level (66.9%). The other independent variables are at moderate importance (66.6%) which include sex, employment status, residential place, smoking habits, history of heart disease, cerebrovascular accident type, blood pressure, diabetes, oral contraceptive pill use, and physical activity. Conclusion: The best means for dropping the BS load is effective BS prevention. DLNN strategy showed a surprising presentation in the prediction of BS mortality based on the main risk factors with an excellent diagnostic accuracy. Moreover, the time interval after 10 years, age, the history of hyperlipoproteinemia, and education level are the most important predictors for BS.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
نسرین صومعهاول
محمد اصغری جعفرآبادیدوم
فرشید فرضی پورچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
The outcome in patients.pdf1399/07/073845481دانلود
JRMS_268_20R18.pdf1399/07/07525134دانلود
Web of sciences.jpeg1399/07/07138043دانلود