Bayesian Joint Modeling of Skew-Positive Longitudinal-Survival Data Using Birnbaum- Saunders Distribution

Bayesian Joint Modeling of Skew-Positive Longitudinal-Survival Data Using Birnbaum- Saunders Distribution


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: توحید جعفری کشکی

کلمات کلیدی: Birnbaum-saunders distribution; Joint model; Skew-positive

نشریه: 0 , 1 , 6 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله توحید جعفری کشکی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات پزشکی مولکولی
کد مقاله 73342
عنوان فارسی مقاله Bayesian Joint Modeling of Skew-Positive Longitudinal-Survival Data Using Birnbaum- Saunders Distribution
عنوان لاتین مقاله Bayesian Joint Modeling of Skew-Positive Longitudinal-Survival Data Using Birnbaum- Saunders Distribution
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق) Journal of Biostatistics and Epidemiology
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح چهار – Proquest
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: There has been a great interest in joint modeling of longitudinal and survival data in recent two decades. Joint models have less restrictive assumptions in multivariate modeling and could address various research questions. This has led to their wide applications in practice. However, earlier models had normality assumption on the distribution in longitudinal part that is usually violated in real data. Hence, recent research have focused on circumventing this issue. Using various skewed distributions has been proposed and applied in the literature. Nevertheless, the flexibility of the proposed methods is limited especially when the data are skew positive. Methods: In this paper, we introduce the use of Birnbaum-Saunders (BS) distribution in joint modeling context. BS distribution is more flexible and could cover a wide range of skew, kurtotic or bimodal data. Results: We analyzed publicly available ddI/ddC data both with normal and BS distributions in Bayesian setting and compared their fit by Widely Applicable Information Criterion (WAIC). The joint BS model showed a better fit to the data. Conclusion: We introduced and applied BS distribution in joint modeling of longitudinal-survival data. Using multi-parameter distributions such as BS in Bayesian setting could improve the fit of models without limitations that arise in transformation of data from original scale.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
توحید جعفری کشکیاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
JBE.pdf1399/07/29774703دانلود