Mapping the cancer-specific FACT-B onto the generic SF-6Dv2

Mapping the cancer-specific FACT-B onto the generic SF-6Dv2


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: محمود یوسفی

کلمات کلیدی: Breast cancer · Quality of life · FACT-B · SF-6Dv2

نشریه: 5270 , 1 , 28 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله محمود یوسفی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده مدیریت و اطلاع رسانی پزشکی
کد مقاله 73101
عنوان فارسی مقاله Mapping the cancer-specific FACT-B onto the generic SF-6Dv2
عنوان لاتین مقاله Mapping the cancer-specific FACT-B onto the generic SF-6Dv2
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Introduction The health-related quality of life (HRQoL) data extracted from cancer-specific questionnaires are often nonpreference based, while patient preference-based utility data are required for health economic evaluation. This study aimed to map Functional Assessment of Cancer Therapy-Breast (FACT-B) subscales onto the Short Form six Dimension as an independent instrument (SF-6Dv2ind-6) using the data gathered from patients with breast cancer. Methods Data for 420 inpatient and outpatient patients with breast cancer were gathered from the largest academic center for cancer patients in Iran. The OLS and Tobit models were used to predict the values of the SF-6Dv2ind-6 with regard to the FACT-B subscales. Prediction accuracy of the models was determined by calculating the root mean square error (RMSE) and mean absolute error (MAE). The relationship between the fitted and observed SF-6Dv2ind-6 values was examined using the Intraclass Correlation Coefficients (ICC). Goodness of fit of models was assessed using the predicted R2 (Pred R2) and adjusted R2 (Adj R2). A tenfold cross-validation method was used for validation of models. Results Data of 416 patients with breast cancer were entered into final analysis. The model included main effects of FACT-B subscales, and statistically significant clinical and demographic variables were the best predictor for SF-6Dv2ind-6 (Model S3 of OLS with Adj R2 = 61.02%, Pred R2 = 59.25%, MAE = 0.0465, RMSE = 0.0621, ICC = 0.678, AIC = -831.324, BIC = -815.871). Conclusion The best algorithm developed for SF-6Dv2ind-6 enables researchers to convert cancer-specific instruments scores into preference-based scores when the data are gathered using cancer-specific instruments.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
محمود یوسفیسوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Screenshot (32).png1399/11/29135717دانلود
fact-b 2020.pdf1399/05/13693158دانلود