Mapping the cancer-specific QLQ-C30 onto the generic EQ-5D-5L and SF-6D in colorectal cancer patients

Mapping the cancer-specific QLQ-C30 onto the generic EQ-5D-5L and SF-6D in colorectal cancer patients


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: محمود یوسفی

کلمات کلیدی: QLQ-C30; EQ-5D-5L; SF-6D; colorectal cancer; quality of life

نشریه: 0 , 1 , 19 , 2018

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله محمود یوسفی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده مدیریت و اطلاع رسانی پزشکی
کد مقاله 71819
عنوان فارسی مقاله Mapping the cancer-specific QLQ-C30 onto the generic EQ-5D-5L and SF-6D in colorectal cancer patients
عنوان لاتین مقاله Mapping the cancer-specific QLQ-C30 onto the generic EQ-5D-5L and SF-6D in colorectal cancer patients
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق) Expert Review of Pharmacoeconomics & Outcomes Research
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Introduction: Economic evaluation of healthcare interventions usually needs accurate data on utility and health-related quality-of-life scores. The aim of this study is to map QLQ-C30 scale score onto EQ- 5D-5L and SF-6D utility values in colorectal cancer (CRC) patients. Methods: EQ-5D-5L, SF-6D, and QLQ-C30 were completed by 252 patients with CRC who were referred to three cancer centers in Tehran between May and September 2017. Moreover, OLS, Tobit, and CLAD models were used to predict EQ-5D-5L and SF-6D values. The goodness of fit of models was evaluated using Pred R2 and Adj R2. In addition, their predictive performance was assessed by MAE, RMSE, ICC, MID, and Spearman’s correlation coefficients between observed and predicted EQ-5D-5L and SF-6D values. Models were validated using a 10-fold cross-validation method. Results: Considering the goodness of fit and predictive ability of models, the OLS Model 2 performed best for EQ-5D-5L (Adj R2 = 58.09%, Pred R2 = 58.93%, MAE = 0.0932, RMSE = 0.129) and the OLS Model 3 performed best for SF-6D (Adj R2 = 54.90%, Pred R2 = 55.62%, MAE = 0.0485, RMSE = 0.0634). Conclusion: Our results demonstrated that algorithms developed based on OLS Models 1 and 2 are the best for predicted EQ-5D-5L and SF-6D values, respectively.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
محمود یوسفیدوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
3.pdf1399/01/301116086دانلود