Parametric survival model to identify the predictors of breast cancer mortality: An accelerated failure time approach

Parametric survival model to identify the predictors of breast cancer mortality: An accelerated failure time approach


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: زینب ایرجی , رویا دولت خواه , توحید جعفری کشکی , محمد اصغری جعفرآبادی

کلمات کلیدی: Accelerated failure time, breast cancer, parametric model, survival

نشریه: 18529 , 1 , 25 , 2020

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله محمد اصغری جعفرآبادی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز مدیریت و پیشگیری از مصدومیتهای حوادث ترافیکی
کد مقاله 71715
عنوان فارسی مقاله Parametric survival model to identify the predictors of breast cancer mortality: An accelerated failure time approach
عنوان لاتین مقاله Parametric survival model to identify the predictors of breast cancer mortality: An accelerated failure time approach
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Breast cancer (BC) was the fifth cause of mortality worldwide in 2015 and second cause of mortality in Iran in 2012. This study aimed to explore factors associated with survival of patients with BC using parametric survival models. Materials and Methods: Data of 1154 patients that diagnosed with BC recorded in the East Azerbaijan population-based cancer registry database between March 2007 and March 2016. The parametric survival model with an accelerated failure time (AFT) approach was used to assess the association between sex, age, grade, and morphology with time to death. Results: A total of 217 (18.8%) individuals experienced death due to BC by the end of the study. Among the fitted parametric survival models including exponential, Weibull, log logistic, and log-normal models, the log-normal model was the best model with the Akaike information criterion = 1441.47 and Bayesian information criterion = 1486.93 where patients with higher ages (time ratio [TR] =0.693; 95% confidence interval [CI] = [0.531, 0.904]) and higher grades (TR = 0.350; 95% CI = [0.201, 0.608]) had significantly lower survival while the lobular carcinoma type of morphology (TR = 1.975; 95% CI = [1.049, 3.720]) had significantly higher survival. Conclusion: Log-normal model showed to be an optimal tool to model the survival of patients with BC in the current study. Age, grade, and morphology showed significant association with time to death in patients with BC using AFT model. This finding could be recommended for planning and health policymaking in patients with BC. However, the impact of the models used for analysis on the significance and magnitude of estimated effects should be acknowledged.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
زینب ایرجیاول
رویا دولت خواهسوم
توحید جعفری کشکیدوم
محمد اصغری جعفرآبادیچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
JResMedSci_2020_25_1_38_282342.pdf1399/01/262997810دانلود
2020 IF=1.47.pdf1399/01/26454673دانلود
2018 SJR=.55.JPG1399/01/26128978دانلود