A new computational method for drug solubility prediction in solvent mixtures

new computational method for drug solubility prediction in solvent mixtures


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سینا دادمند , فرزین کمری , ابوالقاسم جویبان

کلمات کلیدی: Solubility prediction model -Jouyban-Acree model- Error minimization- Cost function- Loss function- Nonlinear regression

نشریه: 18106 , 111369 , 292 , 2019

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ابوالقاسم جویبان
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده داروسازی
کد مقاله 70858
عنوان فارسی مقاله A new computational method for drug solubility prediction in solvent mixtures
عنوان لاتین مقاله new computational method for drug solubility prediction in solvent mixtures
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

General solubility prediction models were developed using both classic least square and a novel method, in order to predict the solubility of the solutes in methanol+water binary solvent system. The novel approach to the regression analysis was investigated using an error minimization method. This aim was achieved by using a user defined loss function regression, instead of the classic least square regression approach. To examine the results of the novel methodology, previous solubility data of 41 solutes were used for comparison. Both least square and novel methods were applied to the Jouyban-Acree model, Jouyban-Acree model in combination with Abraham parameters, and the modified Wilson model. The generally trained versions of the mentioned models produced more accurate predictions using the novel method than the least square method that has been confirmed by ttest analyses. The Jouyban-Acreemodel was the most accurate model among other generally trained models. Finally, the results were validated using a cross-validation analysis which produced the acceptable prediction accuracy of 24.6% mean percentage deviation (MPD) for the new methodology against 32.1% of the least square method. Also a new arithmetically transformed version of aforementioned models was introduced in this study to make the alculations easier to execute.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سینا دادمنداول
فرزین کمریدوم
ابوالقاسم جویبانچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
journal of molecular liquids 292 (2019)111369.pdf1398/11/02265646دانلود