Computational prediction of implantation outcome after embryo transfer

Computational prediction of implantation outcome after embryo transfer


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: رضا فردوسی , بهناز رائف

کلمات کلیدی: assisted reproductive technology, embryo transfer, machine learning, prediction model, ranking algorithms

نشریه: 13427 , 3 , 26 , 2019

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله رضا فردوسی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده مدیریت و اطلاع رسانی پزشکی
کد مقاله 70500
عنوان فارسی مقاله Computational prediction of implantation outcome after embryo transfer
عنوان لاتین مقاله Computational prediction of implantation outcome after embryo transfer
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

The aim of this study is to develop a computational prediction model for implantation outcome after an embryo transfer cycle. In this study, information of 500 patients and 1360 transferred embryos, including cleavage and blastocyst stages and fresh or frozen embryos, from April 2016 to February 2018, were collected. The dataset containing 82 attributes and a target label (indicating positive and negative implantation outcomes) was constructed. Six dominant machine learning approaches were examined based on their performance to predict embryo transfer outcomes. Also, feature selection procedures were used to identify effective predictive factors and recruited to determine the optimum number of features based on classifiers performance. The results revealed that random forest was the best classifier (accuracy = 90.40% and area under the curve = 93.74%) with optimum features based on a 10-fold cross-validation test. According to the Support Vector Machine-Feature Selection algorithm, the ideal numbers of features are 78. Follicle stimulating hormone/human menopausal gonadotropin dosage for ovarian stimulation was the most important predictive factor across all examined embryo transfer features. The proposed machine learning-based prediction model could predict embryo transfer outcome and implantation of embryos with high accuracy, before the start of an embryo transfer cycle.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
رضا فردوسیسوم
بهناز رائفاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
1460458219892138.pdf1399/05/22525539دانلود