Computational prediction of implantation outcome after embryo transfer
Computational prediction of implantation outcome after embryo transfer
نویسندگان: رضا فردوسی , بهناز رائف
کلمات کلیدی: assisted reproductive technology, embryo transfer, machine learning, prediction model, ranking algorithms
نشریه: 13427 , 3 , 26 , 2019
| نویسنده ثبت کننده مقاله |
رضا فردوسی |
| مرحله جاری مقاله |
تایید نهایی |
| دانشکده/مرکز مربوطه |
دانشکده مدیریت و اطلاع رسانی پزشکی |
| کد مقاله |
70500 |
| عنوان فارسی مقاله |
Computational prediction of implantation outcome after embryo transfer |
| عنوان لاتین مقاله |
Computational prediction of implantation outcome after embryo transfer |
| ناشر |
3 |
| آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ |
بلی |
| عنوان نشریه (خارج از لیست فوق) |
|
| نوع مقاله |
Original Article |
| نحوه ایندکس شدن مقاله |
ایندکس شده سطح یک – ISI - Web of Science |
| آدرس لینک مقاله/ همایش در شبکه اینترنت |
|
| The aim of this study is to develop a computational prediction model for implantation outcome after an embryo transfer cycle. In this study, information of 500 patients and 1360 transferred embryos, including cleavage and blastocyst stages and fresh or frozen embryos, from April 2016 to February 2018, were collected. The dataset containing 82 attributes and a target label (indicating positive and negative implantation outcomes) was constructed. Six dominant machine learning approaches were examined based on their performance to predict embryo transfer outcomes. Also, feature selection procedures were used to identify effective predictive factors and recruited to determine the optimum number of features based on classifiers performance. The results revealed that random forest was the best classifier (accuracy = 90.40% and area under the curve = 93.74%) with optimum features based on a 10-fold cross-validation test. According to the Support Vector Machine-Feature Selection algorithm, the ideal numbers of features are 78. Follicle stimulating hormone/human menopausal gonadotropin dosage for ovarian stimulation was the most important predictive factor across all examined embryo transfer features. The proposed machine learning-based prediction model could predict embryo transfer outcome and implantation of embryos with high accuracy, before the start of an embryo transfer cycle. |
| نام فایل |
تاریخ درج فایل |
اندازه فایل |
دانلود |
| 1460458219892138.pdf | 1399/05/22 | 525539 | دانلود |