Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points

Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سینا دادمند , فرزین کمری , ابوالقاسم جویبان

کلمات کلیدی: cosolvency; Jouyban–Acree model; minimum experimental data; solubility prediction

نشریه: 55007 , 1 , 20 , 2019

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ابوالقاسم جویبان
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات آنالیز دارویی
کد مقاله 68886
عنوان فارسی مقاله Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points
عنوان لاتین مقاله Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

This study aimed to provide a rational experimental design to collect a minimum number of experimental data points for a drug dissolved in a given binary solvent mixture at various temperatures, and to describe a computational procedure to predict the solubility of the drugs in any solvent composition and temperature of interest. We gathered available solubility data sets from papers published from 2012 to 2016 (56 data sets, 3488 data points totally). The mean percentage deviations (MPD) used to check the accuracy of predictions was calculated by Eq. 10. Fifty-six datasets were analyzed using 8 training data points which the overall MPD was calculated to be 15.5% ± 15.1%, and for 52 datasets after excluding 5 outlier sets was 12.1% ± 8.9%. The paired t test was conducted to compare the MPD values obtained from the models trained by 7 and 8 training data points and the reduction in prediction overall MPD (from 17.7% to 15.5%) was statistically significant (p < 0.04). To further reduction in MPD values, the computations were also conducted using 9 training data points, which did not reveal any significant difference comparing to the predictions using 8 training data points (p > 0.88). This observation revealed that the model adequately trained using 8 data points and could be used as a practical strategy for predicting the solubility of drugs in binary solvent mixtures at various temperatures with acceptable prediction error and using minimum experimental efforts. These sorts of predictions are highly in demand in the pharmaceutical industry.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سینا دادمنداول
فرزین کمریدوم
ابوالقاسم جویبانچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
dadmand2018.pdf1398/06/211153848دانلود