Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives

Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: پریا قائمیان , علی شایان فر

کلمات کلیدی: Image analysis, QSAR, P-glycoprotein (P-gp), PCR, SVM, epigallocatechin

نشریه: 8667 , 3 , 15 , 2019

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله علی شایان فر
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده داروسازی
کد مقاله 66378
عنوان فارسی مقاله Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives
عنوان لاتین مقاله Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives
ناشر 2
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Permeability glycoprotein (P-gp) is one of the cell membrane proteins that can push some drugs out of the cell causing drug tolerance and its inhibition can prevent drug resistance. Objective: In this study, we used image-based Quantitative Structure-Activity Relationship (QSAR) models to predict the P-gp inhibitory activity of epigallocatechin and gallocatechin derivatives. Methods: The 2D-chemical structures and their P-gp inhibitory activity were taken from literature. The pixels of images and their Principal Components (PCs) were calculated using MATLAB software. Principle Component Regression (PCR), Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches were used to develop QSAR models. Statistical parameters included the leave one out cross-validated correlation coefficient (q2) for internal validation of the models and R2 of test set, Root Mean Square Error (RMSE) and Concordance Correlation Coefficient (CCC) were applied for external validation. Results: Six PCs from image analysis method were selected by stepwise regression for developing linear and non-linear models. Non-linear models i.e. ANN (with the R2 of 0.80 for test set) were chosen as the best for the established QSAR models. Conclusion: According to the result of the external validation, ANN model based on image analysis method can predict the P-gp inhibitory activity of epigallocatechin and gallocatechin derivatives better than the PCR and SVM models.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
پریا قائمیاناول
علی شایان فردوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Current Computer-Aided Drug Design2019.pdf1398/01/232464678دانلود