Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives
Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives
نویسندگان: پریا قائمیان , علی شایان فر
کلمات کلیدی: Image analysis, QSAR, P-glycoprotein (P-gp), PCR, SVM, epigallocatechin
نشریه: 8667 , 3 , 15 , 2019
| نویسنده ثبت کننده مقاله |
علی شایان فر |
| مرحله جاری مقاله |
تایید نهایی |
| دانشکده/مرکز مربوطه |
دانشکده داروسازی |
| کد مقاله |
66378 |
| عنوان فارسی مقاله |
Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives |
| عنوان لاتین مقاله |
Image-based QSAR Model for the Prediction of P-gp Inhibitory Activity of Epigallocatechin and Gallocatechin Derivatives |
| ناشر |
2 |
| آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ |
خیر |
| عنوان نشریه (خارج از لیست فوق) |
|
| نوع مقاله |
Original Article |
| نحوه ایندکس شدن مقاله |
ایندکس شده سطح یک – ISI - Web of Science |
| آدرس لینک مقاله/ همایش در شبکه اینترنت |
|
| Background: Permeability glycoprotein (P-gp) is one of the cell membrane proteins that
can push some drugs out of the cell causing drug tolerance and its inhibition can prevent drug
resistance.
Objective: In this study, we used image-based Quantitative Structure-Activity Relationship (QSAR)
models to predict the P-gp inhibitory activity of epigallocatechin and gallocatechin derivatives.
Methods: The 2D-chemical structures and their P-gp inhibitory activity were taken from literature.
The pixels of images and their Principal Components (PCs) were calculated using MATLAB software.
Principle Component Regression (PCR), Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches were used to develop QSAR models. Statistical parameters included the
leave one out cross-validated correlation coefficient (q2) for internal validation of the models and R2
of test set, Root Mean Square Error (RMSE) and Concordance Correlation Coefficient (CCC) were
applied for external validation.
Results: Six PCs from image analysis method were selected by stepwise regression for developing
linear and non-linear models. Non-linear models i.e. ANN (with the R2 of 0.80 for test set) were chosen as the best for the established QSAR models.
Conclusion: According to the result of the external validation, ANN model based on image analysis
method can predict the P-gp inhibitory activity of epigallocatechin and gallocatechin derivatives better
than the PCR and SVM models. |
| نام فایل |
تاریخ درج فایل |
اندازه فایل |
دانلود |
| Current Computer-Aided Drug Design2019.pdf | 1398/01/23 | 2464678 | دانلود |