QSAR Analysis of Cyclooxygenase Inhibitors Selectivity Index (COX1/COX2): Application of SVM-RBF and MLR Methods

QSAR Analysis of Cyclooxygenase Inhibitors Selectivity Index (COX1/COX2): Application of SVM-RBF and MLR Methods


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: ابوالقاسم جویبان , سمیه سلطانی

کلمات کلیدی: COX Inhibitor QSAR MLR SVM-RBF Selectivity Index

نشریه: 55429 , 2 , 21 , 2015

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سمیه سلطانی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده داروسازی
کد مقاله 66236
عنوان فارسی مقاله QSAR Analysis of Cyclooxygenase Inhibitors Selectivity Index (COX1/COX2): Application of SVM-RBF and MLR Methods
عنوان لاتین مقاله QSAR Analysis of Cyclooxygenase Inhibitors Selectivity Index (COX1/COX2): Application of SVM-RBF and MLR Methods
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله سایر موارد
نحوه ایندکس شدن مقاله ایندکس شده سطح سه – Scopus
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Anti-inflammatory inhibitors of cyclooxygenase 2 (COX2) have been shown to increase the risk of adverse cardiovascular events in clinical trials. The studies showed that such adverse events could be due to COX2-induced suppression of prostaglandin I2 (PGI2) synthesis. These adverse effects related to the degree of COX2 selectivity of NSAIDs. Study of the selectivity index of COX1/COX2 is important for development of the new NSAID drugs. Prediction methods of such index have been interested by scientists. Methods: The selectivity index of a number of 68 molecules from 8 different chemical groups was predicted using MLR and SVM-RBF models. Calculated structural and physicochemical parameters, using the energy optimized molecular structures were applied to develop the desired models. The developed models were validated using LMO, external test set and Yrandomization methods. Results: Regression coefficient of developed MLR model was 0.825 and 0.752 for training and test sets, while for SVM-RBF model it was 0.628 and 0.863 for training and test sets. The RMSE of the developed models were 0.08, 0.06, 0.29 and 0.16 respectively for train (MLR, SVM-RBF) and test (MLR, SVMRBF) datasets. Conclusion: The validation results showed the higher prediction capability for SVM-RBF in comparison with MLR models. The selected descriptors showed the contribution of electronic parameters in conjunction with size and shape parameters in selectivity of studied compounds.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
ابوالقاسم جویباندوم
سمیه سلطانیسوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
222c66f98bba83503728875edb5b5b6022ba.pdf1398/01/17690048دانلود