3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images

3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: مهداد اسمعیلی

کلمات کلیدی: Spectral-Domain Optical Coherence Tomography

نشریه: 45862 , 10 , 2 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله مهداد اسمعیلی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 65630
عنوان فارسی مقاله 3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images
عنوان لاتین مقاله 3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used interferometric diagnostic technique in ophthalmology that provides novel in vivo information of depth-resolved inner and outer retinal structures. This imaging modality can assist clinicians in monitoring the progression of Age-related Macular Degeneration (AMD) by providing high-resolution visualization of drusen. Quantitative tools for assessing drusen volume that are indicative of AMD progression may lead to appropriate metrics for selecting treatment protocols. To address this need, a fully automated algorithm was developed to segment drusen area and volume from SD-OCT images. The proposed algorithm consists of three parts: (1) preprocessing, which includes creating binary mask and removing possible highly reflective posterior hyaloid that is used in accurate detection of inner segment/outer segment (IS/OS) junction layer and Bruch’s membrane (BM) retinal layers; (2) coarse segmentation, in which 3D curvelet transform and graph theory are employed to get the possible candidate drusenoid regions; (3) fine segmentation, in which morphological operators are used to remove falsely extracted elongated structures and get the refined segmentation results. The proposed method was evaluated in 20 publically available volumetric scans acquired by using Bioptigen spectral-domain ophthalmic imaging system. The average true positive and false positive volume fractions (TPVF and FPVF) for the segmentation of drusenoid regions were found to be 89.15% ± 3.76 and 0.17% ± .18%, respectively.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
مهداد اسمعیلیاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
4362602.pdf1397/10/244414733دانلود