Designing Automatic Coding Module of Cancer Open Text Pathology Reports Based on International Classification of Diseases for Oncology
Designing Automatic Coding Module of Cancer Open Text Pathology Reports Based on International Classification of Diseases for Oncology
نویسندگان: نازیلا مفتیان , پیمان رضایی , مهسا دهقانی , طاها صمدسلطانی
کلمات کلیدی: Clinical Coding; Informatics; Neoplasms; Pathology
نشریه: 0 , 5 , 1 , 2018
| نویسنده ثبت کننده مقاله |
طاها صمدسلطانی |
| مرحله جاری مقاله |
تایید نهایی |
| دانشکده/مرکز مربوطه |
دانشکده مدیریت و اطلاع رسانی پزشکی |
| کد مقاله |
64578 |
| عنوان فارسی مقاله |
Designing Automatic Coding Module of Cancer Open Text Pathology Reports Based on International Classification of Diseases for Oncology |
| عنوان لاتین مقاله |
Designing Automatic Coding Module of Cancer Open Text Pathology Reports Based on International Classification of Diseases for Oncology |
| ناشر |
4 |
| آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ |
خیر |
| عنوان نشریه (خارج از لیست فوق) |
Biotechnology and Health Sciences |
| نوع مقاله |
Original Article |
| نحوه ایندکس شدن مقاله |
ایندکس شده سطح چهار – ISC - Islamic Science Citation |
| آدرس لینک مقاله/ همایش در شبکه اینترنت |
|
| Background: In the domain of clinical documents, all diseases are classified at templates by the world health organization and specific codes have been assigned to them. The goal of this study was automatic coding of cancer free texts based on International Classification of Diseases for Oncology (ICD-O-3) and evaluation of results.
Methods: In this research, the preparation and development of one initial sample of automatic coding module on pathology reports open texts existing in PubMed’s cancer titles database is performed for exploitation of the information based on the texts related to cancer to coding the information based on ICD-O-3. After developing the algorithm for exploiting cancer phrases and the codes based on ICD-O-3 and converting them to code in programming environment, the required data for implementation and algorithm testing were performed and finally the obtained results were evaluated.
Results: Automatic coding prepares the possibility of coding and listing information inside the text and also coding the existing titles of neoplasms at descriptive text of pathology reports and with an accuracy of approximately 70%. This study explained a simple stepwise approach to coding issues in medicine.
Conclusions: It performed effectively on free texts and could be used as a decision support module in Health Information Systems to reduce coding errors. |
| نام فایل |
تاریخ درج فایل |
اندازه فایل |
دانلود |
| bhs-05-01-13667 (1).pdf | 1397/08/13 | 770638 | دانلود |