Modelling the prevalence of diabetes mellitus risk factors based on artificial neural network and multiple regression

Modelling the prevalence of diabetes mellitus risk factors based on artificial neural network and multiple regression


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: کمال قلی پور , محمد اصغری جعفرآبادی , شبنم ایزدی , علی جنتی

کلمات کلیدی: artificial neural network, diabetes mellitus, multiple regression, risk factors.

نشریه: 9790 , 8 , 24 , 2018

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله شبنم ایزدی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه عوامل اجتماعی موثر بر سلامت
کد مقاله 64170
عنوان فارسی مقاله Modelling the prevalence of diabetes mellitus risk factors based on artificial neural network and multiple regression
عنوان لاتین مقاله Modelling the prevalence of diabetes mellitus risk factors based on artificial neural network and multiple regression
ناشر 5
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح سه – Scopus
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disease with complex causes, manifestations, complications and management. Understanding the wide range of risk factors for T2DM can facilitate diagnosis, proper classification and cost-effective management of the disease. Aims: To compare the power of an artificial neural network (ANN) and logistic regression in identifying T2DM risk factors. Methods: This descriptive and analytical study was conducted in 2013. The study samples were all residents aged 15–64 years of rural and urban areas in East Azerbaijan, Islamic Republic of Iran, who consented to participate (n=990). The latest data available were collected from the Noncommunicable Disease Surveillance System of East Azerbaijan Province (2007). Data were analysed using SPSS version 19. Results: Based on multiple logistic regression, age, family history of T2DM and residence were the most important risk factors for T2DM. Based on ANN, age, body mass index and current smoking were most important. To test for generalization, ANN and logistic regression were evaluated using the area under the receiver operating characteristic curve (AUC). The AUC was 0.726 (SE = 0.025) and 0.717 (SE = 0.026) for logistic regression and ANN, respectively (P< 0.001). Conclusions: The logistic regression model is better than ANN and it is clinically more comprehensible

نویسندگان
hide/show

نویسنده نفر چندم مقاله
کمال قلی پوراول
محمد اصغری جعفرآبادیدوم
شبنم ایزدیسوم
علی جنتیچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
2-Modelling the prevalence of diabetes mellitus risk factors.pdf1397/07/22975279دانلود