[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback

[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: مهداد اسمعیلی

کلمات کلیدی: Real-time Tracking, Lung Tumor Tracking, Respiratory Motion Prediction, Neuro-fuzzy Model, EPID

نشریه: 27423 , 1 , 52 , 2018

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله مهداد اسمعیلی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 64139
عنوان فارسی مقاله [OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback
عنوان لاتین مقاله [OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for 10 patients. For modelling of respiratory motion, the endexhale phase of these images has been considered as the reference and they were analyzed using neuro-fuzzy method to predict the magnitude of displacement of the lung tumor. Then, the predicted data were used to determine the leaf motion in MLC. Finally, the trained algorithm was figured out using Shaper software to show how MLCs could track the moving tumor and then imported on the Varian Linac equipped with EPID. Results: The root mean square error (RMSE) was used as a statistical criterion in order to investigate the accuracy of neuro-fuzzy performance in lung tumor prediction. The results showed that RMSE did not have a considerable variation. Also, there was a good agreement between the images obtained by EPID and Shaper for a respiratory cycle. Conclusion: The approach used in this study can track the moving tumor with MLC based on the 4D modelling, so it can improve treatment accuracy, dose conformity and sparing of healthy tissues because of low error in margins that can be ignored. Therefore, this method can work more

نویسندگان
hide/show

نویسنده نفر چندم مقاله
مهداد اسمعیلیپنجم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
AS6819293933281321539596045379_content_1.pdf1397/07/25799228دانلود
PIIS1120179718305684.pdf1397/07/1839443دانلود