[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback
[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback
نویسندگان: مهداد اسمعیلی
کلمات کلیدی: Real-time Tracking, Lung Tumor Tracking, Respiratory Motion Prediction,
Neuro-fuzzy Model, EPID
نشریه: 27423 , 1 , 52 , 2018
| نویسنده ثبت کننده مقاله |
مهداد اسمعیلی |
| مرحله جاری مقاله |
تایید نهایی |
| دانشکده/مرکز مربوطه |
دانشکده علوم نوین پزشکی |
| کد مقاله |
64139 |
| عنوان فارسی مقاله |
[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback |
| عنوان لاتین مقاله |
[OA014] 4D lung tumor motion modelling using dynamic MLC tracking and EPID feedback |
| ناشر |
6 |
| آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ |
خیر |
| عنوان نشریه (خارج از لیست فوق) |
|
| نوع مقاله |
Original Article |
| نحوه ایندکس شدن مقاله |
ایندکس شده سطح یک – ISI - Web of Science |
| آدرس لینک مقاله/ همایش در شبکه اینترنت |
|
| Background: Respiratory motion causes thoracic movement and reduces targeting
accuracy in radiotherapy.
Objective: This study proposes an approach to generate a model to track lung
tumor motion by controlling dynamic multi-leaf collimators.
Material and Methods: All slices which contained tumor were contoured in
the 4D-CT images for 10 patients. For modelling of respiratory motion, the endexhale
phase of these images has been considered as the reference and they were
analyzed using neuro-fuzzy method to predict the magnitude of displacement of the
lung tumor. Then, the predicted data were used to determine the leaf motion in MLC.
Finally, the trained algorithm was figured out using Shaper software to show how
MLCs could track the moving tumor and then imported on the Varian Linac equipped
with EPID.
Results: The root mean square error (RMSE) was used as a statistical criterion in
order to investigate the accuracy of neuro-fuzzy performance in lung tumor prediction.
The results showed that RMSE did not have a considerable variation. Also,
there was a good agreement between the images obtained by EPID and Shaper for a
respiratory cycle.
Conclusion: The approach used in this study can track the moving tumor with
MLC based on the 4D modelling, so it can improve treatment accuracy, dose conformity
and sparing of healthy tissues because of low error in margins that can be
ignored. Therefore, this method can work more |
| نام فایل |
تاریخ درج فایل |
اندازه فایل |
دانلود |
| AS6819293933281321539596045379_content_1.pdf | 1397/07/25 | 799228 | دانلود |
| PIIS1120179718305684.pdf | 1397/07/18 | 39443 | دانلود |