| Insulin resistance and inflammation are strongly linked to non-alcoholic fatty liver disease (NAFLD) as a feature of the metabolic syndrome. Furthermore, the role of dysregulation of miR-34a, miR-451, and miR-33a in pathogenesis and progression of NAFLD has been identified. trans-Chalcone is a simple chalcone with anti-diabetic and anti-inflammatory activities. However, to the best of our knowledge, miRNA dependent mechanisms of these protective effects under pathologic conditions are not understood. Thus, this study, for the first time, aimed to evaluate the effects of trans-Chalcone on miR-34a, miR-451, and miR-33a signaling pathways in the liver of high-fat (HF) emulsion-fed rats. To this aim, twenty-one rats were randomly and equally divided into three groups: control, which was gavaged with 10% tween 80; HF, which was gavaged with HF emulsion and 10% tween 80; and HF + trans-Chalcone (HF + TC), which was gavaged with HF emulsion and trans-Chalcone. Then, circulating levels of glucose and insulin were measured and used for the calculation of HOMA-IR. Hepatic expression levels of miR-34a, miR-451, miR-33a, SIRT1, and ABCA1 and also protein levels of ABCA1 and IL-8 were assayed. In this study, trans-chalcone increased hepatic cholesterol efflux and prevented insulin resistance and liver inflammation in HF emulsion-fed rats. These protective effects were modulated through the down-regulation of miR-34a and its associated elevation of SIRT1, the up-regulation of miR-451 which was associated with a reduction in IL-8, and the inhibition of miR-33a which was related to the elevation of ABCA1 in the liver of HF emulsion-fed rats. Therefore, trans-Chalcone exerts its beneficial effects by targeting hepatic miR-34a-, miR-451-, and miR-33a-related pathways. |