A quantitative structure–mobility relationship of organic acids using solvation parameters

A quantitative structure–mobility relationship of organic acids using solvation parameters


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: هاله واعظ , ثمین حمیدی

کلمات کلیدی: Abraham parameters, ANN, electrophoretic mobility, MLR, organic acids, quantitative structure property relationship

نشریه: 42810 , 19 , 40 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله ثمین حمیدی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات ایمنی غذا و دارو
کد مقاله 63192
عنوان فارسی مقاله A quantitative structure–mobility relationship of organic acids using solvation parameters
عنوان لاتین مقاله A quantitative structure–mobility relationship of organic acids using solvation parameters
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

A quantitative structure–mobility relationship (QSMR) is proposed to estimate the electrophoretic mobility of diverse sets of analyses in capillary zone electrophoresis using Abraham solvation parameters of analyses, such as the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. QSMR was developed for prediction the electrophoretic mobility of 231 organic acids using the solvation parameters calculated by Abraham. Multiple linear regression (MLR) as a linear model and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The prediction results are obtained by nonlinear model, ANN, seem to be superior over MLR and were in good agreement with experimental data. In the proposed ANN–QSMR model, the overall mean percentage deviation values were 5.6, 5.4, and 5.3% and the coefficients of determinations (R2) were 0.84, 0.84, and 0.84 for training, test, and verification set, respectively. To investigate the robustness of the model, cross-validation methods have been established, i.e., leave-one-out and leave-N-out (N = 5 and 10) and model is showed good predictive ability against data variation in cross-validation process. This model is not only able to accurately predict the migration order of a diverse set of organic acids but also model finds that solvation parameters are responsible in separation mechanism.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
هاله واعظسوم
ثمین حمیدیدوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Paper4.pdf1397/03/291158986دانلود