Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach

Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: مهداد اسمعیلی

کلمات کلیدی: Adaptive neuro-fuzzy inference system model, adaptive prediction model, external radiotherapy, tumor tracking

نشریه: 0 , 1 , 8 , 2018

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله مهداد اسمعیلی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 63061
عنوان فارسی مقاله Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach
عنوان لاتین مقاله Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach
ناشر 5
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق) Journal of medical signals and sensors
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح دو – PubMed
آدرس لینک مقاله/ همایش در شبکه اینترنت

خلاصه مقاله
hide/show

Background:Accurate delivery of the prescribed dose to moving lung tumors is a key challenge in radiation therapy. Tumor tracking involves real-time specifying the target and correcting the geometry to compensate for the respiratory motion, that’s why tracking the tumor requires caution. This study aims to develop a markerless lung tumor tracking method with a high accuracy. Methods:In this study, four-dimensional computed tomography (4D-CT) images of 10 patients were used, and all the slices which contained the tumor were contoured for all patients. The first four phases of 4D-CT images which contained tumors were selected as input of the software, and the next six phases were considered as the output. A hybrid intelligent method, adaptive neuro-fuzzy inference system (ANFIS), was used to evaluate motion of lung tumor. The root mean square error (RMSE) was used to investigate the accuracy of ANFIS performance for tumor motion prediction. Results: For predicting the positions of contoured tumors, the averages of RMSE for each patient were calculated for all the patients. The results showed that the RMSE did not have a major variation. Conclusions:The data in the 4D-CT images were used for motion tracking instead of using markers that lead to more information of tumor motion with respect to methods based on marker location

نویسندگان
hide/show

نویسنده نفر چندم مقاله
مهداد اسمعیلیپنجم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
404-1408-1-PB.pdf1397/06/061137547دانلود