Evaluation of Classification Algorithms vs Knowledge-Based Methods for Differential Diagnosis of Asthma in Iranian Patients
Evaluation of Classification Algorithms vs Knowledge-Based Methods for Differential Diagnosis of Asthma in Iranian Patients
نویسندگان: پیمان رضایی , طاها صمدسلطانی
کلمات کلیدی: Asthma, Data Mining, Decision Support, Knowledge, Machine Learning
نشریه: 0 , 10 , 2 , 2018
| نویسنده ثبت کننده مقاله |
طاها صمدسلطانی |
| مرحله جاری مقاله |
تایید نهایی |
| دانشکده/مرکز مربوطه |
دانشکده مدیریت و اطلاع رسانی پزشکی |
| کد مقاله |
62337 |
| عنوان فارسی مقاله |
Evaluation of Classification Algorithms vs Knowledge-Based Methods for Differential Diagnosis of Asthma in Iranian Patients |
| عنوان لاتین مقاله |
Evaluation of Classification Algorithms vs Knowledge-Based Methods for Differential Diagnosis of Asthma in Iranian Patients |
| ناشر |
5 |
| آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ |
خیر |
| عنوان نشریه (خارج از لیست فوق) |
International Journal of Information Systems in the Service Sector (IJISSS) |
| نوع مقاله |
Original Article |
| نحوه ایندکس شدن مقاله |
ایندکس شده سطح یک – ISI - Web of Science |
| آدرس لینک مقاله/ همایش در شبکه اینترنت |
https://www.igi-global.com/article/evaluation-of-classification-algorithms-vs-knowledge-based-methods-for-differential-diagnosis |
| Medical data mining intends to solve real-world problems in the diagnosis and treatment of diseases. This process applies various techniques and algorithms which have different levels of accuracy and precision. The purpose of this article is to apply data mining techniques to the diagnosis of asthma. Sensitivity, specificity and accuracy of K-nearest neighbor, Support Vector Machine, naive Bayes, Artificial Neural Network, classification tree, CN2 algorithms, and related similar studies were evaluated. ROC curves were plotted to show the performance of the authors' approach. Support vector machine (SVM) algorithms achieved the highest accuracy at 98.59% with a sensitivity of 98.59% and a specificity of 98.61% for class 1. Other algorithms had a range of accuracy greater than 87%. The results show that the authors can accurately diagnose asthma approximately 98% of the time based on demographics and clinical data. The study also has a higher sensitivity when compared to expert and knowledge-based systems. |
| نام فایل |
تاریخ درج فایل |
اندازه فایل |
دانلود |
| IGI.pdf | 1396/12/24 | 558545 | دانلود |