Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification

Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: رقیه ارونقی , سبلان دانشور

کلمات کلیدی: Atrial Blood Pressure (ABP) Discrete Wavelet Transformation (DWT) Electrocardiogram (ECG) Fusion Multi-Layer Perceptron Neural Network (MLPNN)

نشریه: 0 , 151 , 151 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله رقیه ارونقی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 62098
عنوان فارسی مقاله Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification
عنوان لاتین مقاله Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق) Computer Methods and Programs in Biomedicine
نوع مقاله Research Letter
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت https://www.sciencedirect.com/science/article/pii/S0169260716314638#

خلاصه مقاله
hide/show

Background and Objective: Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. Methods: These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. Results: In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes,respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. Conclusions: It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
رقیه ارونقیاول
سبلان دانشوردوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
letter.doc1396/10/201206784دانلود
fusion.pdf1396/10/201676273دانلود