CLASSIFICATION OF CARDIAC ARRHYTHMIAS USING ARTERIAL BLOOD PRESSURE BASED ON DISCRETE WAVELET TRANSFORM

CLASSIFICATION OF CARDIAC ARRHYTHMIAS USING ARTERIAL BLOOD PRESSURE BASED ON DISCRETE WAVELET TRANSFORM


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سبلان دانشور , رقیه ارونقی

کلمات کلیدی: Arterial blood pressure; Cardiac arrhythmias; Classification; Linear square support vector machine; Discrete wavelet transform; Electrocardiogram

نشریه: 0 , 5 , 29 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله رقیه ارونقی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 61967
عنوان فارسی مقاله CLASSIFICATION OF CARDIAC ARRHYTHMIAS USING ARTERIAL BLOOD PRESSURE BASED ON DISCRETE WAVELET TRANSFORM
عنوان لاتین مقاله CLASSIFICATION OF CARDIAC ARRHYTHMIAS USING ARTERIAL BLOOD PRESSURE BASED ON DISCRETE WAVELET TRANSFORM
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق) Biomedical Engineering: Applications, Basis and Communications
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت http://www.worldscientific.com/doi/abs/10.4015/S101623721750034X

خلاصه مقاله
hide/show

arly and correct diagnosis of cardiac arrhythmias is an important step in the treatment of patients. In the recent decades, a wide area of bio-signal processing is allocated to cardiac arrhythmia classification. Unlike other studies, which have employed Electrocardiogram (ECG) signal as a main signal to classify the arrhythmia and sometimes they have used other vital signals as an auxiliary signal to fill missing data and robust detections. In this study, the Arterial Blood Pressure (ABP) is used to classify six types of heart arrhythmias. In other words, in this study for first time, the arrhythmias are classified according ABP signal information. Discrete Wavelet Transform (DWT) is used to de-noise and decompose ABP signal. On feature extraction stage, three types of features including frequency, power, and entropy are extracted. In classification stage, Least Square Support Vector Machine (LS-SVM) is employed as a classifier. The accuracy, sensitivity, and specificity rates of 95.75%, 96.77%, and 96.32% are achieved, respectively. Currently, the classification of cardiac arrhythmias is based on the ABP signal which has some advantages. The recording of ABP signal is done by means of one electrode and therefore it has resulted in lower costs compared with the ECG signal. Finally, it has been shown that ABP has very important and valuable information about the heart performance and can be used in arrhythmia classification.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سبلان دانشوردوم
رقیه ارونقیاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Biomedical Engineering Applications Basis and Communications Volume 29 issue 05 2017 [doi 10.4015%2FS101623721750034X] Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Gosh --.pdf1396/10/02460030دانلود
letter.doc1396/09/261206784دانلود