Analyzing a Lung Cancer Patient Dataset with the Focus on Predicting Survival Rate One Year after Thoracic Surgery

Analyzing a Lung Cancer Patient Dataset with the Focus on Predicting Survival Rate One Year after Thoracic Surgery


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: پیمان رضایی , نازیلا مفتیان , مهسا دهقانی , طاها صمدسلطانی

کلمات کلیدی: Data Mining; lung neoplasms; Cancer; Informatics; Knowledge

نشریه: 3607 , 6 , 18 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله طاها صمدسلطانی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده مدیریت و اطلاع رسانی پزشکی
کد مقاله 60983
عنوان فارسی مقاله Analyzing a Lung Cancer Patient Dataset with the Focus on Predicting Survival Rate One Year after Thoracic Surgery
عنوان لاتین مقاله Analyzing a Lung Cancer Patient Dataset with the Focus on Predicting Survival Rate One Year after Thoracic Surgery
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح دو – Medline
آدرس لینک مقاله/ همایش در شبکه اینترنت https://www.ncbi.nlm.nih.gov/pubmed/28669163

خلاصه مقاله
hide/show

Background: Data mining, a new concept introduced in the mid-1990s, can help researchers to gain new, profound insights and facilitate access to unanticipated knowledge sources in biomedical datasets. Many issues in the medical field are concerned with the diagnosis of diseases based on tests conducted on individuals at risk. Early diagnosis and treatment can provide a better outcome regarding the survival of lung cancer patients. Researchers can use data mining techniques to create effective diagnostic models. The aim of this study was to evaluate patterns existing in risk factor data of for mortality one year after thoracic surgery for lung cancer. Methods: The dataset used in this study contained 470 records and 17 features. First, the most important variables involved in the incidence of lung cancer were extracted using knowledge discovery and datamining algorithms such as naive Bayes, maximum expectation and then, using a regression analysis algorithm, a questionnaire was developed to predict the risk of death one year after lung surgery. Outliers in the data were excluded and reported using the clustering algorithm. Finally, a calculator was designed to estimate the risk for one-year post-operative mortality based on a scorecard algorithm. Results: The results revealed the most important factor involved in increased mortality to be large tumor size. Roles for type II diabetes and preoperative dyspnea in lower survival were also identified. The greatest commonality in classification of patients was Forced expiratory volume in first second (FEV1), based on levels of which patients could be classified into different categories. Conclusion: Development of a questionnaire based on calculations to diagnose disease can be used to identify and fill knowledge gaps in clinical practice guidelines.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
پیمان رضاییاول
نازیلا مفتیاندوم
مهسا دهقانیسوم
طاها صمدسلطانیچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
ASI.pdf1396/04/20311920دانلود