Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks

Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: بهزاد عابدی

کلمات کلیدی: Keywords: artificial neural network, discrete wavelet transform, electrocardiogram, music, probabilistic neural network

نشریه: 55037 , 5 , 17 , 2017

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله بهزاد عابدی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه دانشکده علوم نوین پزشکی
کد مقاله 60663
عنوان فارسی مقاله Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks
عنوان لاتین مقاله Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت http://www.anakarder.com/jvi.aspx?pdir=anatoljcardiol&plng=eng&un=AJC-60430&look4=

خلاصه مقاله
hide/show

Objective: In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are different. In the present study, we aimed to examine the effects of listening to traditional Persian music on electrocardiogram (ECG) signals in young women. Methods: Twenty-two healthy females participated in this study. ECG signals were recorded under two conditions: rest and music. For each ECG signal, 20 morphological and wavelet-based features were selected. Artificial neural network (ANN) and probabilistic neural network (PNN) classifiers were used for the classification of ECG signals during and before listening to music. Results: Collected data were separated into two data sets: train and test. Classification accuracies of 88% and 97% were achieved in train data sets using ANN and PNN, respectively. In addition, the test data set was employed for evaluating the classifiers, and classification rates of 84% and 93% were obtained using ANN and PNN, respectively. Conclusion: The present study investigated the effect of music on ECG signals based on wavelet transform and morphological features. The results obtained here can provide a good understanding on the effects of music on ECG signals to researchers. (Anatol J Cardiol 2017; 17: 398-403)

نویسندگان
hide/show

نویسنده نفر چندم مقاله
بهزاد عابدیاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
AJC-60430-ORIGINAL_INVESTIGATION-ABBASI.pdf1396/02/21170585دانلود