Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سیاوش دستمالچی

کلمات کلیدی:

نشریه: 16590 , 1 , 11 , 2012

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سیاوش دستمالچی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات بیوتکنولوژی(زیست فناوری)
کد مقاله 59487
عنوان فارسی مقاله Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
عنوان لاتین مقاله Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
ناشر 3
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت http://ijpr.sbmu.ac.ir/article_1031_be0d6c7c33f37b85bbbce5918cbbdd88.pdf

خلاصه مقاله
hide/show

Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سیاوش دستمالچیاول

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
article_1031_be0d6c7c33f37b85bbbce5918cbbdd88.pdf1395/09/16617022دانلود