| An estimate of volume of distribution (V
d
Available online 7 April 2006
b
) is of paramount importance both in drug choice as well as maintenance and loading dose calculations in
therapeutics. It can also be used in the prediction of drug biological half life. This study employs quantitative structure–pharmacokinetic relationship
(QSPR) techniques for the prediction of volume of distribution. Values of V
for 129 drugs were collated from the literature. Structural descriptors
consisted of partitioning, quantum mechanical, molecular mechanical, and connectivity parameters calculated by specialized software and pK
d
values obtained from ACD labs/log D database. Genetic algorithm and stepwise regression analyses were used for variable selection and model
development. Models were validated using a leave-many-out procedure. QSPR analyses resulted in a number of significant models for acidic and
basic drugs separately, and for all the drugs. Validation studies showed that mean fold error of predictions for the selected models were between
1.79 and 2.17. Although separate QSPR models for acids and bases resulted in lower prediction errors than models for all the drugs, the external
validation study showed a limited applicability for the equation obtained for acids. Therefore, the universal model that requires only calculated
structural descriptors was recommended. The QSPR model is able to predict the volume of distribution of drugs belonging to different chemical
classes with a prediction error similar to that of the other more complicated prediction methods including the commonly practiced interspecies
scaling. The structural descriptors in the model can be interpreted based on the known mechanisms of distribution and the molecular structures of
the drugs. |