GPCRTOP: A novel g protein-coupled receptor topology prediction method based on hidden Markov model approach using Viterbi algorithm

GPCRTOP: A novel g protein-coupled receptor topology prediction method based on hidden Markov model approach using Viterbi algorithm


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: سیاوش دستمالچی

کلمات کلیدی: GPCRs; HMM; Topology prediction; Transmembrane proteins; Viterbi algorithm

نشریه: , 4 , 9 , 2014

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله سیاوش دستمالچی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات بیوتکنولوژی(زیست فناوری)
کد مقاله 59393
عنوان فارسی مقاله GPCRTOP: A novel g protein-coupled receptor topology prediction method based on hidden Markov model approach using Viterbi algorithm
عنوان لاتین مقاله GPCRTOP: A novel g protein-coupled receptor topology prediction method based on hidden Markov model approach using Viterbi algorithm
ناشر 4
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ بلی
عنوان نشریه (خارج از لیست فوق) Current Bioinformatics
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت http://www.eurekaselect.com/122207

خلاصه مقاله
hide/show

Knowledge about the topology of G protein-coupled receptors (GPCRs) can be very useful in predicting diverse range of properties about these proteins, such as function, three dimensional structure, and ligand binding site. Considering that only few GPCRs have known structures, many computational efforts have been carried out to develop methods for predicting their topology. A novel method to predict the location and the length of transmembrane helices in GPCRs was proposed. This method consists of a “one by one” amino acid feature extraction window which makes it possible for the method to learn the amino acid distribution in helical segments of GPCR proteins. It is based on hidden Markov model (HMM) with a specific architecture that takes advantage of Viterbi decoding algorithm and the observed frequency values for adjusting the transition probabilities. The prediction capability of the method was evaluated for per-protein, per-segment and per-residue accuracies on two datasets consisting of 649 (at least one GPCR from each family) and 2898 (all GPCRs) sequences extracted from UniProt database and compared with other commonly used existing methods. It was found that in all three assessments, the prediction accuracies for the new method on the larger dataset, i.e., 2898 GPCRs, were higher than that obtained by other methods. The results showed that our method was able to predict the topology of GPCR proteins without any sequence length limitation with the accuracies of 88.9 % and 87.4% for the small (i.e., 649 GPCRs) and large (i.e., 2898 GPCRs) datasets, respectively. (Availability status: The source code is available upon request from the authors)

نویسندگان
hide/show

نویسنده نفر چندم مقاله
سیاوش دستمالچیچهارم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
Untitled.png1395/08/27139549دانلود