DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins

DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins


چاپ صفحه
پژوهان
صفحه نخست سامانه
چکیده مقاله
چکیده مقاله
نویسندگان
نویسندگان
دانلود مقاله
دانلود مقاله
دانشگاه علوم پزشکی تبریز
دانشگاه علوم پزشکی تبریز

نویسندگان: علی اکبر جمالی بیرامی , رضا فردوسی

کلمات کلیدی: machine learning, accuracy, drug target, druggable, feature.

نشریه: 9605 , 5 , 21 , 2016

اطلاعات کلی مقاله
hide/show

نویسنده ثبت کننده مقاله علی اکبر جمالی بیرامی
مرحله جاری مقاله تایید نهایی
دانشکده/مرکز مربوطه مرکز تحقیقات ریز فناوری دارویی
کد مقاله 57916
عنوان فارسی مقاله DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins
عنوان لاتین مقاله DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins
ناشر 6
آیا مقاله از طرح تحقیقاتی و یا منتورشیپ استخراج شده است؟ خیر
عنوان نشریه (خارج از لیست فوق)
نوع مقاله Original Article
نحوه ایندکس شدن مقاله ایندکس شده سطح یک – ISI - Web of Science
آدرس لینک مقاله/ همایش در شبکه اینترنت http://www.sciencedirect.com/science/article/pii/S1359644616000271

خلاصه مقاله
hide/show

Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org.

نویسندگان
hide/show

نویسنده نفر چندم مقاله
علی اکبر جمالی بیرامیاول
رضا فردوسیدوم

لینک دانلود مقاله
hide/show

نام فایل تاریخ درج فایل اندازه فایل دانلود
DrugMiner- comparative analysis of machine learning algorithms for prediction of potential druggable proteins.pdf1395/03/02739591دانلود